Effect of Thermomechanical Fatigue on Shear Strength between a Conventional and an Experimental Polymer for Prosthetic Application

Autores

  • Denise Tornavoi de Castro University of Uberaba, Department of Biomaterials.
  • Vítor de Baptista Bastos Duarte University of São Paulo, Dental Materials and Prosthesis Departament, Ribeirão Preto School of Dentistry. SP, Brasil.
  • Marco Antonio Schiavon Federal University of São João del Rei, Department of Natural Sciences.
  • Andréa Cândido dos Reis University of São Paulo, Programa de Pós-Graduação em Reabilitação Oral. SP, Brasil

DOI:

https://doi.org/10.17921/2447-8938.2019v21n2p97-102

Resumo

Abstract

The incorporation of antimicrobial agents may influence the mechanical properties of acrylic resins. Thus, the use of these agents only in regions of dental prostheses subject to greater contamination may be an alternative. This study evaluates the effect of thermomechanical fatigue on the bond strength between a conventional and an experimental acrylic resin incorporated with nanostructured silver vanadate decorated with silver nanoparticles (AgVO3). 60 specimens (Ø13mm x 23mm height) in self-curing resin were obtained and divided into groups according to the experimental resin incorporated with AgVO3 (Ø4mm x 6mm height): G1–Conventional x Conventional, G2–Conventional x 2.5% of AgVO3, G3–Conventional x 5% of AgVO3. Ten samples of each group were subjected to bond strength analysis after manufacture, and 10 were previously submitted to 1.200.000 cycles with 98N load and 2Hz/second frequency and alternating baths of 5 ºC, 37ºC and 55 ºC. The fracture area was analyzed.  The data were submitted to analysis of variance of two-factors with Bonferroni adjustment for post hoc comparisons (α=0.05) was used. The fatigue did not affect the bond strength (p=0.416), however, there was influence of the AgVO3 concentration on the bond strength between the resins (p=0.013). Mixed failures with adhesive predominance were observed in samples without AgVO3 and cohesive failures in samples with the nanomaterial. The use of AgVO3 can improve or maintain the bond strength between resins with no thermomechanical fatigue influence.

 

Keywords: Acrylic Resins. Products with Antimicrobial Action. Nanotechnology. Thermomechanical fatigue

 

Resumo

A incorporação de agentes antimicrobianos pode influenciar nas propriedades mecânicas de resinas acrílicas. Desta forma, o uso destes agentes apenas em regiões das próteses dentárias sujeitas a maior contaminação pode ser uma alternativa. Este estudo avalia o efeito da fadiga termomecânica na resistência de união entre uma resina acrílica convencional e uma experimental incorporada com vanadato de prata nanoestruturado decorado com nanopartículas de prata (AgVO3). Foram obtidos 60 espécimes (Ø13mm x 23mm de altura) em resina autopolimerizável, divididos em grupos de acordo com a resina experimental incorporada com AgVO3 (Ø4mm x 6mm de altura): G1-Convencional x Convencional, G2-Convencional x 2,5% de AgVO3, G3 -Convencional x 5% de AgVO3. Dez amostras de cada grupo foram submetidas à análise de resistência à união após a confecção e 10 foram submetidas previamente a 1.200.000 ciclos com carga de 98 N e frequência de 2Hz/segundo e banhos alternados de 5 ºC, 37 ºC e 55 ºC. A área de fratura foi analisada. Os dados foram submetidos à análise de variância de dois fatores com ajuste de Bonferroni para comparações pos hoc (α = 0,05). A fadiga não afetou a força de união (p=0,416), no entanto, houve influência da concentração de AgVO3 na resistência de união entre as resinas (p=0,013). Falhas mistas com predominância adesiva foram observadas nas amostras sem AgVO3 e falhas coesivas nas amostras contendo o nanomaterial. O uso de AgVO3 pode melhorar ou manter a resistência da união entre as resinas sem influência da fadiga termomecânica.

 

Palavras-chave: Resinas Acrílicas. Produtos com Ação Antimicrobiana. Nanotecnologia.

Referências

de Andrade FB, Lebrão ML, Santos JL, da Cruz Teixeira DS, de Oliveira Duarte YA. Relationship between oral health-related quality of life, oral health, socioeconomic, and general health factors in elderly Brazilians. J Am Geriatr Soc 2012;60(9):1755-1760.

Michalakis K, Kalpidis CD, Hirayama H. Conversion of an existing metal ceramic crown to an interim restoration and nonfunctional loading of a single implant in the maxillary esthetic zone: A clinical report. J Prosthet Dent 2014; 111(1):6-10.

Bidinotto AB, Santos CM, Tôrres LH, de Sousa MD, Hugo FN, Hilgert JB. Change in quality of life and its association with oral health and other factors in community-dwelling elderly adults-a prospective cohort study. J Am Geriatr Soc 2016;64(12):2533-8.

Wittneben JG, Buser D, Belser UC, Bragger U. Peri-implant soft tissue conditioning with provisional restorations in the esthetic zone: the dynamic compression technique. Int J Periodontics Restorative Dent 2013;33(4):447–455.

Abdullah AO, Tsitrou EA, Pollington S. Comparative in vitro evaluation of CAD/CAM vs conventional provisional crowns. J Appl Oral Sci 2016;24(3):258-263. doi: http://dx.doi.org/10.1590/1678-775720150451

Gratton DG, Aquilino SA. Interim restorations. Dent Clin North Am 2004;48(2):487-97.

Sivakumar I, Arunachalam KS, Sajjan S, Ramaraju AV, Rao B, Karamaj B. Incorporation of antimicrobial macromolecules in acrylic denture base resins: a research composition and update. J Prosthodont 2013;23(4):284-290.

Susewind S, Lang R, Hahnel S. Biofilm formation and Candida albicans morphology on the surface of denture base materials. Mycoses 2015;58(12):719-27. doi: 10.1111/myc.12420.

Palattella P, Torsello F, Cordaro L. Two-year prospective clinical comparison of immediate replacement vs. immediate restoration of single tooth in the esthetic zone. Clin Oral Implants Res 2008;19(11):1148-53.

Nguyen-Hieu T, Borghetti A, Aboudharam G. Peri-implantitis: from diagnosis to therapeutics. J Investig Clin Dent 2012;3(2):79-94.

Mancini GE, Gianni AB, Cura F, Ormanier Z, Carinci F. Efficacy of a new implant-abutment connection to minimize microbial contamination: an in vitro study. Oral Implantol (Rome) 2016;9(3):99-105. doi: 10.11138/orl/2016.9.3.099.

Lang NP, Kiel RA, Anderhalden K. Clinical and microbiological effects of subgingival restorations with overhanging or clinically perfect margins. J Clin Periodontol 1983;10(6):563-78.

Yeo IS, Yang JH, Lee JB. In vitro marginal fit of three all ceramic crown systems. J Prosthet Dent 2003;90(5): 459-64.

Gendreau L, Loewy ZG. Epidemiology and etiology of denture stomatitis. J Prosthodont 2011;20(4):251-60.

Prabha RD, Kandasamy R, Sivaraman US, Nandkumar MA, Nair PD. Antibacterial nanosilver coated orthodontic bands with potential implications in dentistry. Res 2016;144(4):580-6. doi: 10.4103/0971-5916.200895.

Haghgoo R, Ahmadvand M, Nyakan M, Jafari M. Antimicrobial efficacy of mixtures of nanosilver and zinc oxide eugenol against enterococcus faecalis. J Contemp Dent Pract 2017;18(3):177-81. doi: 10.5005/jp-journals-10024-2012

Xie X, Wang L, Xing D, Zhang K, Weir MD, Liu H, et al. Novel dental adhesive with triple benefits of calcium phosphate recharge, protein-repellent and antibacterial functions. Dent Mater 2017;33(5):553-63. doi: 10.1016/j.dental.2017.03.002

Juan L, Zhimin Z, Anchun M, Lei L, Jingchao Z. Deposition of silver nanoparticles on titanium surface for antibacterial effect. Int J Nanomedicine 2010;5:261-7.

Chladek G, Mertas A, Barszczewska-Rybarek I, Nalewajek T, Zmudzki J, Król W, et al. Antifungal activity of denture soft lining material modified by silver nanoparticles-a pilot study. Int J Mol Sci 2011;12(7):4735-44.

Köroğlu A, Şahin O, Kürkçüoğlu I, Dede DÖ, Özdemir T, Hazer B. Silver nanoparticle incorporation effect on mechanical and thermal properties of denture base acrylic resins. J Appl Oral Sci 2016;24(6):590-6. doi: http://dx.doi.org/10.1590/1678-775720160185

Holtz RD, Souza Filho AG, Brocchi M, Martins D, Durán N, Alves OL. Development of nanostructured silver vanadates decorated with silver nanoparticles as a novel antibacterial agent. Nanotechnology 2010; 21(18):185102.

Holtz RD, Lima BA, Souza Filho AG, Brocchi M, Alves OL. Nanostructured silver vanadate as a promising antibacterial additive to water-based paints. Nanomedicine 2012;8(6):935-40.

Castro DT, Holtz RD, Alves OL, Watanabe E, Valente ML, Silva CH, et al. Development of a novel resin with antimicrobial properties for dental application. J Appl Oral Sci 2014;22(5):442-9.

de Castro DT, Valente ML, Agnelli JA, Lovato da Silva CH, Watanabe E, Siqueira RL, et al. In vitro study of the antibacterial properties and impact strength of dental acrylic resins modified with a nanomaterial. J Prosthet Dent 2016;115(2):238-46. doi: 10.1016/j.prosdent.2015.09.003.

de Castro DT, Valente ML, da Silva CH, Watanabe E, Siqueira RL, Schiavon MA, et al. Evaluation of antibiofilm and mechanical properties of new nanocomposites based on acrylic resins and silver vanadate nanoparticles. Arch Oral Biol 2016;67:46-53. doi: 10.1016/j.archoralbio.2016.03.002

Kohal RJ, Wolkewitz M, Tsakona A. The effects of cyclic loading and preparationon the fracture strength of zirconium-dioxide implants: An in vitro investigation. Clin Oral Implant Res 2011;22(8):808-14.

Singh A, Garg SJ. Comparative evaluation of flexural strength of provisional crown and bridge materials: an in vitro study. Clin Diagn Res 2016;10(8):ZC72-77.

Onwubu SC, Vahed A, Singh S, Kanny KM. Reducing the surface roughness of dental acrylic resins by using an eggshell abrasive material. J Prosthet Dent 2017;117(2):310-4. doi: 10.1016/j.prosdent.2016.06.024.

Cierech M, Kolenda A, Grudniak AM, Wojnarowicz J, Wozniak B, Golas M, et al. Significance of polymethylmethacrylate (PMMA) modification by zinc oxide nanoparticles for fungal biofilm formation. Pharm 2016;510(1):323-35. doi: 10.1016/j.ijpharm.2016.06.052.

Mirizadeh A, Atai M, Ebrahimi S. Fabrication of denture base materials with antimicrobial properties. J Prosthet Dent 2018;119(2):292-8. doi: 10.1016/j.prosdent.2017.03.011.

Cibim DD, Saito MT, Giovani PA, Borges AFS, Pecorari VGA, Gomes OP, et al. Novel Nanotechnology of TiO2 improves physical-chemical and biological properties of glass ionomer cement. Int J Biomater 2017;2017:7123919. doi: https://doi.org/10.1155/2017/7123919

Kim BJ, Yang HS, Chun MG, Park YJ. Shore hardness and tensile bond strength of long-term soft denture lining materials. J Prosthet Dent 2014;112(5):1289-97.

Akin H, Tugut F, Guney U, Kirmali O, Akar T. Tensile bond strength of silicone-based soft denture liner to two chemically different denture base resins after various surface treatments. Lasers Med Sci 2013;28(1):119-23.

Corsalini M, Di Venere D, Pettini F, Stefanachi G, Catapano S, Boccaccio A, et al. A comparison of shear bond strength of ceramic and resin denture teeth on different acrylic resin bases. Open Dent J 2014;8:241-50.

Ahmad F, Dent M, Yunus N. Shear bond strength of two chemically different denture base polymers to reline materials. J Prosthodont 2009;18(7):596-602.

Neppelenbroek KH, Pavarina AC, Gomes MN, Machado AL, Vergani CE. Bond strength of hard chairside reline resins to rapid polymerizing denture base resin before and after termal cycling. J Appl Oral Sci 2006; 14(6):436-442.

Rajaganesh N, Sabarinathan S, Azhagarasan NS, Shankar C, Krishnakumar J, Swathi S. Comparative evaluation of shear bond strength of two different chairside soft liners to heat processed acrylic denture base resin: an in vitro study. J Pharm Bioallied Sci 2016;8(Suppl 1):S154-S159.

Minami H, Suzuki S, Minesaki Y, Kurashige H, Tanaka T. In vitro evaluation of the effect of thermal and mechanical fatigues on the bonding of an autopolymerizing soft denture liner to denture base materials using different primers. J Prosthodont 2008;17(5):392-400.

Seo RS, Murata H, Hong G, Vergani CE, Hamada T. Influence of thermal and mechanical stresses on the strength of intact and relined denture bases. J Prosthet Dent 2006;96(1):59-67.

Downloads

Publicado

2019-06-19

Como Citar

1.
de Castro DT, Duarte V de BB, Schiavon MA, dos Reis AC. Effect of Thermomechanical Fatigue on Shear Strength between a Conventional and an Experimental Polymer for Prosthetic Application. J. Health Sci. [Internet]. 19º de junho de 2019 [citado 22º de janeiro de 2025];21(2):97-102. Disponível em: https://journalhealthscience.pgsscogna.com.br/JHealthSci/article/view/5956

Edição

Seção

Artigos