CAD/CAM Materials for Endocrown Restorations: Evaluation of Microhardness, Flexural Strength, and Surface Characterization

Autores

DOI:

https://doi.org/10.17921/2447-8938.2024v26n1p09-16

Resumo

Abstract
Endocrowns have emerged as a promising option for restoring endodontically treated teeth, offeringa restorable fracture scenario. However, regarding the choice of material and its fracture resistance, there are gaps in the literature regarding the best indication. The objective of this research was to evaluate and compare the effect of restorative materials for CAD-CAM in the manufacture of endocrown restorations, through an in Vitro study on hardness and fracture resistance. For the study, CAD-CAM blocks were transformed into discs 12 mm in diameter and 1.2 mm thick (specimens). Three restorative materials were evaluated and distributed into experimental groups (N=12 specimens): Leucita- Reinforced Ceramic/ IPS Empress CAD (MRleu), Lithium Disilicate/ IPS Emax CAD (MRdis) and Nanoceramic Resin /Lava Ultimate (MRres). These restorative materials were evaluated for morphology (N=1) by Scanning Electron Microscopy (SEM) and surface chemistry (N=1) by dispersive energy spectroscopy (EDS). The specimens were evaluated when the Vikers micro hardness (N=1) with a load of 1kg and 10 indentations, as well as the resistance to biaxial flexion (N=10) at a test speed of 0.5 mm/min. After the fracture occurred, the fragments were examined under a stereomicroscope. The results were tabulated and analyzed using the Minitab statistical program. The results showed that the MRdis material demonstrated superior results in relation to hardness (P=0.000) and biaxial bending resistance (P=0.000), followed by MRleu and finally the MRres. The presence of inorganic particles on an organic matrix and the presence of Zirconium (Zr) stands out in Lava Ultimate. It was concluded that restorative materials for CAD-CAM in the manufacture of Endocrowns restorations have a significant effect on hardness and mechanical strength.

Keywords: Ceramics. CAD-CAM. Hardness. Flexural Strength.

Resumo
As endocrowns surgiram como uma alternativa favorável para a restauração de dentes tratados endodonticamente, e se apresentam em um cenário de fratura restaurável. No entanto, em relação ao material de escolha e sua resistência à fratura existem lacunas na literature sobre a melhor indicação. O objetivo dessa pesquisa foi avaliar e comparar o efeito de materiais restauradores para CAD-CAM na confecção de restaurações endocrowns, através de um estudo in vitro sobre dureza e resistência à fratura. Para realização do estudo, blocos para CAD-CAM foram transformados em discos com 12 mm de diâmetro e 1,2 mm de espessura (espécimes). Três materiais restauradores foram avaliados e distribuídos em grupos experimentais (N=12 espécimes): Cerâmica Reforçada por Leucita/ IPS Empress CAD (MRleu), Dissilicato de Lítio/ IPS Emax CAD (MRdis) e Resina Nanocerâmica /Lava Ultimate (MRres). Estes materiais restauradores foram avaliados quanto à morfologia (N=1) através de Microscopia Eletrônica de Varredura (MEV) e química superficial (N=1) pela Espectroscopia de energia dispersiva (EDS). Os espécimes foram avaliados quanto à microdureza Vikers (N=1) com uma carga de 1kg e 10 indentações, como também em relação a resistência à flexão biaxial (N=10) em uma velocidade de ensaio de 0,5 mm/min. Os fragmentos após a fratura foram observados em estereomicroscópio. Os dados obtidos foram tabulados e analisados no programa estatístico Minitab. Os resultados observados mostraram que o material MRdis obteve resultados superiores em relação a dureza (P=0,000) e a resistência à flexão biaxial (P=0,000), seguido pelo MRleu e por fim o MRres. Destaca-se na Lava Ultimate a presença de partículas inorgânicas sobre uma matriz orgânica, além da presença de Zircônio (Zr). Conclui-se que materiais restauradores para CAD-CAM na confecção de restaurações Endocrowns apresentam efeito significativo quanto a dureza e resistência mecânica.

Palavras-chaves: Cerâmica. CAD-CAM. Dureza. Resistência à Flexão.

Referências

Alghalayini S, Ebeid KK, Aldahrab A, Wahsh M. Fracture load of nano-ceramic composite material for anterior endocrown restorations. Brazilian Dental Science. 2020 Jan 31;23(1). doi: https://doi.org/10.14295/bds.2020.v23i1.1853

Foad AM, Hamdy A, Abd el Fatah G, Aboelfadl A. Influence of CAD/CAM Material and Preparation Design on the Long-term Fracture Resistance of Endocrowns Restoring Maxillary Premolars. Brazilian Dental Science. 2020 Sep 30;23(4):9p. doi: https://doi.org/10.14295/bds.2020.v23i4.2060

Borgia Botto E, Barón R, Borgia J L. Endocrown: A retrospective patient series study, in a 8 to 19-year period. Odontoestomatología [Internet]. 2016 Nov [citado 2023 Mayo 31]; 18(28): 48-59. Available from: http://www.scielo.edu.uy/scielo.php?script=sci_arttext&pid=S1688-93392016000200007&lng=es

Biacchi, G. R., Basting, R. T. Comparison of fracture strength of endocrowns and glass fiber post-retained conventional crowns. Operative dentistry, 2012; 37(2), 130-136. doi: https://doi.org/10.2341/11-105-L

Lise, D. P., Van Ende, A., De Munck, J., Suzuki, T. Y. U., Vieira, L. C. C., Van Meerbeek, B. Biomechanical behavior of endodontically treated premolars using different preparation designs and CAD/CAM materials. Journal of dentistry, 2017; 59, 54-61. doi: https://doi.org/10.1016/j.jdent.2017.02.007

Zhu, J., Rong, Q., Wang, X., Gao, X. Influence of remaining tooth structure and restorative material type on stress distribution in endodontically treated maxillary premolars: A finite element analysis. The Journal of prosthetic dentistry, 2017; 117(5), 646- 655. doi: https://doi.org/10.1016/j.prosdent.2016.08.023

Skalskyi, V., Makeev, V., Stankevych, O., Pavlychko, R. Features of fracture of prosthetic tooth-endocrown constructions by means of acoustic emission analysis. Dental materials, 2018; 34(3), e46-e55. doi: https://doi.org/10.1016/j.dental.2018.01.023

Kanat-Ertürk, B., Saridağ, S., Köseler, E., Helvacioğlu-Yiğit, D., Avcu, E., Yildiran- Avcu, Y. Fracture strengths of endocrown restorations fabricated with different preparation depths and CAD/CAM materials. Dental materials journal, 2018; 37(2), 256-265. doi: https://doi.org/10.4012/dmj.2017-035

Sedrez-Porto, J. A., Münchow, E. A., Valente, L. L., Cenci, M. S., Pereira-Cenci, T. New material perspective for endocrown restorations: effects on mechanical performance and fracture behavior. Brazilian oral research, 2019; 33. doi: https://doi.org/10.1590/1807-3107bor-2019.vol33.0012

Elashmawy, Y., Elshahawy, W., Seddik, M., Aboushelib, M. Influence of fatigue loading on fracture resistance of endodontically treated teeth restored with endocrowns. Journal of Prosthodontic Research, 2021; 65(1), 78-85. doi: https://doi.org/10.2186/jpr.JPOR_2019_485

Ramos Nde C, Campos TM, Paz IS, Machado JP, Bottino MA, Cesar PF, Melo RM. Microstructure characterization and SCG of newly engineered dental ceramics. Dent Mater. 2016; 32(7), 870-8. doi: 10.1016/j.dental.2016.03.018

Lawson, N. C., Bansal, R., Burgess, J. O. Wear, strength, modulus and hardness of CAD/CAM restorative materials. Dental Materials, 2016; 32(11), e275-e283. doi: https://doi.org/10.1016/j.dental.2016.08.222

Wendler, M., Belli, R., Petschelt, A., Mevec, D., Harrer, W., Lube, T., Lohbauer, U. Chairside CAD/CAM materials. Part 2: Flexural strength testing. Dental Materials, 2017; 33(1), 99-109. doi: https://doi.org/10.1016/j.dental.2016.10.008

Stawarczyk, B., Liebermann, A., Eichberger, M., Güth, J. F. Evaluation of mechanical and optical behavior of current esthetic dental restorative CAD/CAM composites. Journal of the mechanical behavior of biomedical materials, 2016; 55, 1-11. doi: https://doi.org/10.1016/j.jmbbm.2015.10.004

Tribst, J. P. M., Dal Piva, A. M. D. O., Madruga, C. F. L., Valera, M. C., Borges, A. L. S., Bresciani, E., de Melo, R. M. Endocrown restorations: Influence of dental remnant and restorative material on stress distribution. Dental Materials, 2018; 34(10), 1466-1473. doi: https://doi.org/10.1016/j.dental.2018.06.012

Hampe, R., Lümkemann, N., Sener, B., Stawarczyk, B. The effect of artificial aging on Martens hardness and indentation modulus of different dental CAD/CAM restorative materials. Journal of the Mechanical Behavior of Biomedical Materials, 2018; 86, 191-198. doi: https://doi.org/10.1016/j.jmbbm.2018.06.028

Sonmez, N., Gultekin, P., Turp, V., Akgungor, G., Sen, D., Mijiritsky, E. Evaluation of five CAD/CAM materials by microstructural characterization and mechanical tests: a comparative in vitro study. BMC oral health, 2018; 18(1), 1-13. doi: https://doi.org/10.1186/s12903-017-0458-2

Gracis S, Thompson VP, Ferencz JL, Silva NR, Bonfante EA. A new classification system for all-ceramic and ceramic-like restorative materials. Int J Prosthodont. 2015; 28(3), 227-35. doi: 10.11607/ijp.4244.

Zierden, K., Acar, J., Rehmann, P., Wöstmann, B. Wear and fracture strength of new ceramic resins for chairside milling. Int J Prosthodont, 2018; 31(1), 74-76. doi: https://doi.org/10.11607/ijp.5492

Awada, A., Nathanson, D. Mechanical properties of resin-ceramic CAD/CAM restorative materials. The Journal of prosthetic dentistry, 2015; 114(4), 587-593. doi: https://doi.org/10.1016/j.prosdent.2017.08.016

Downloads

Publicado

2024-04-24

Como Citar

1.
Raimundo Ágatha CM, Silva CML, Souza TF da S, Tôrres Neto AJ, Grangeiro MTV, Figueiredo VMG de. CAD/CAM Materials for Endocrown Restorations: Evaluation of Microhardness, Flexural Strength, and Surface Characterization. J. Health Sci. [Internet]. 24º de abril de 2024 [citado 23º de novembro de 2024];26(1):09-16. Disponível em: https://journalhealthscience.pgsscogna.com.br/JHealthSci/article/view/12512

Edição

Seção

Artigos